What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Abstract:Traditional information extraction systems face challenges with text only language models as it does not consider infographics (visual elements of information) such as tables, charts, images etc. often used to convey complex information to readers. Multimodal LLM (MLLM) face challenges of finding needle in the haystack problem i.e., either longer context length or substantial number of documents as search space. Late interaction mechanism over visual language models has shown state of the art performance in retrieval-based vision augmented Q&A tasks. There are yet few challenges using it for RAG based multi-modal Q&A. Firstly, many popular and widely adopted vector databases do not support native multi-vector retrieval. Secondly, late interaction requires computation which inflates space footprint and can hinder enterprise adoption. Lastly, the current state of late interaction mechanism does not leverage the approximate neighbor search indexing methods for large speed ups in retrieval process. This paper explores a pragmatic approach to make vision retrieval process scalable and efficient without compromising on performance quality. We propose multi-step custom implementation utilizing widely adopted hybrid search (metadata & embedding) and state of the art late interaction re-ranker to retrieve best matching pages. Finally, MLLM are prompted as reader to generate answers from contextualized best matching pages. Through experiments, we observe that the proposed design is scalable (significant speed up) and stable (without degrading performance quality), hence can be used as production systems at enterprises.
Abstract:Recent progress has been made in region-aware vision-language modeling, particularly with the emergence of the Describe Anything Model (DAM). DAM is capable of generating detailed descriptions of any specific image areas or objects without the need for additional localized image-text alignment supervision. We hypothesize that such region-level descriptive capability is beneficial for the task of Visual Question Answering (VQA), especially in challenging scenarios involving images with dense text. In such settings, the fine-grained extraction of textual information is crucial to producing correct answers. Motivated by this, we introduce DAM-QA, a framework with a tailored evaluation protocol, developed to investigate and harness the region-aware capabilities from DAM for the text-rich VQA problem that requires reasoning over text-based information within images. DAM-QA incorporates a mechanism that aggregates answers from multiple regional views of image content, enabling more effective identification of evidence that may be tied to text-related elements. Experiments on six VQA benchmarks show that our approach consistently outperforms the baseline DAM, with a notable 7+ point gain on DocVQA. DAM-QA also achieves the best overall performance among region-aware models with fewer parameters, significantly narrowing the gap with strong generalist VLMs. These results highlight the potential of DAM-like models for text-rich and broader VQA tasks when paired with efficient usage and integration strategies. Our code is publicly available at https://github.com/Linvyl/DAM-QA.git.
Abstract:Graph fraud detection has garnered significant attention as Graph Neural Networks (GNNs) have proven effective in modeling complex relationships within multimodal data. However, existing graph fraud detection methods typically use preprocessed node embeddings and predefined graph structures to reveal fraudsters, which ignore the rich semantic cues contained in raw textual information. Although Large Language Models (LLMs) exhibit powerful capabilities in processing textual information, it remains a significant challenge to perform multimodal fusion of processed textual embeddings with graph structures. In this paper, we propose a \textbf{M}ulti-level \textbf{L}LM \textbf{E}nhanced Graph Fraud \textbf{D}etection framework called MLED. In MLED, we utilize LLMs to extract external knowledge from textual information to enhance graph fraud detection methods. To integrate LLMs with graph structure information and enhance the ability to distinguish fraudsters, we design a multi-level LLM enhanced framework including type-level enhancer and relation-level enhancer. One is to enhance the difference between the fraudsters and the benign entities, the other is to enhance the importance of the fraudsters in different relations. The experiments on four real-world datasets show that MLED achieves state-of-the-art performance in graph fraud detection as a generalized framework that can be applied to existing methods.
Abstract:Wi-Fi Channel State Information (CSI) has gained increasing interest for remote sensing applications. Recent studies show that Doppler velocity projections extracted from CSI can enable human activity recognition (HAR) that is robust to environmental changes and generalizes to new users. However, despite these advances, generalizability still remains insufficient for practical deployment. Inspired by neural radiance fields (NeRF), which learn a volumetric representation of a 3D scene from 2D images, this work proposes a novel approach to reconstruct an informative 3D latent motion representation from one-dimensional Doppler velocity projections extracted from Wi-Fi CSI. The resulting latent representation is then used to construct a uniform Doppler radiance field (DoRF) of the motion, providing a comprehensive view of the performed activity and improving the robustness to environmental variability. The results show that the proposed approach noticeably enhances the generalization accuracy of Wi-Fi-based HAR, highlighting the strong potential of DoRFs for practical sensing applications.
Abstract:Voice anonymization systems aim to protect speaker privacy by obscuring vocal traits while preserving the linguistic content relevant for downstream applications. However, because these linguistic cues remain intact, they can be exploited to identify semantic speech patterns associated with specific speakers. In this work, we present VoxATtack, a novel multimodal de-anonymization model that incorporates both acoustic and textual information to attack anonymization systems. While previous research has focused on refining speaker representations extracted from speech, we show that incorporating textual information with a standard ECAPA-TDNN improves the attacker's performance. Our proposed VoxATtack model employs a dual-branch architecture, with an ECAPA-TDNN processing anonymized speech and a pretrained BERT encoding the transcriptions. Both outputs are projected into embeddings of equal dimensionality and then fused based on confidence weights computed on a per-utterance basis. When evaluating our approach on the VoicePrivacy Attacker Challenge (VPAC) dataset, it outperforms the top-ranking attackers on five out of seven benchmarks, namely B3, B4, B5, T8-5, and T12-5. To further boost performance, we leverage anonymized speech and SpecAugment as augmentation techniques. This enhancement enables VoxATtack to achieve state-of-the-art on all VPAC benchmarks, after scoring 20.6% and 27.2% average equal error rate on T10-2 and T25-1, respectively. Our results demonstrate that incorporating textual information and selective data augmentation reveals critical vulnerabilities in current voice anonymization methods and exposes potential weaknesses in the datasets used to evaluate them.
Abstract:Low-light images suffer from complex degradation, and existing enhancement methods often encode all degradation factors within a single latent space. This leads to highly entangled features and strong black-box characteristics, making the model prone to shortcut learning. To mitigate the above issues, this paper proposes a wavelet-based low-light stereo image enhancement method with feature space decoupling. Our insight comes from the following findings: (1) Wavelet transform enables the independent processing of low-frequency and high-frequency information. (2) Illumination adjustment can be achieved by adjusting the low-frequency component of a low-light image, extracted through multi-level wavelet decomposition. Thus, by using wavelet transform the feature space is decomposed into a low-frequency branch for illumination adjustment and multiple high-frequency branches for texture enhancement. Additionally, stereo low-light image enhancement can extract useful cues from another view to improve enhancement. To this end, we propose a novel high-frequency guided cross-view interaction module (HF-CIM) that operates within high-frequency branches rather than across the entire feature space, effectively extracting valuable image details from the other view. Furthermore, to enhance the high-frequency information, a detail and texture enhancement module (DTEM) is proposed based on cross-attention mechanism. The model is trained on a dataset consisting of images with uniform illumination and images with non-uniform illumination. Experimental results on both real and synthetic images indicate that our algorithm offers significant advantages in light adjustment while effectively recovering high-frequency information. The code and dataset are publicly available at: https://github.com/Cherisherr/WDCI-Net.git.
Abstract:The SaaS paradigm has revolutionized software distribution by offering flexible pricing options to meet diverse customer needs. However, the rapid expansion of the SaaS market has introduced significant complexity for DevOps teams, who must manually manage and evolve pricing structures, an approach that is both time-consuming and prone to errors. The absence of automated tools for pricing analysis restricts the ability to efficiently evaluate, optimize, and scale these models. This paper proposes leveraging intelligent pricing (iPricing), dynamic, machine-readable pricing models, as a solution to these challenges. Intelligent pricing enables competitive analysis, streamlines operational decision-making, and supports continuous pricing evolution in response to market dynamics, leading to improved efficiency and accuracy. We present an LLM-driven approach that automates the transformation of static HTML pricing into iPricing, significantly improving efficiency and consistency while minimizing human error. Our implementation, AI4Pricing2Yaml, features a basic Information Extractor that uses web scraping and LLMs technologies to extract essential pricing components, plans, features, usage limits, and add-ons, from SaaS websites. Validation against a dataset of 30 distinct commercial SaaS, encompassing over 150 intelligent pricings, demonstrates the system's effectiveness in extracting the desired elements across all steps. However, challenges remain in addressing hallucinations, complex structures, and dynamic content. This work highlights the potential of automating intelligent pricing transformation to streamline SaaS pricing management, offering implications for improved consistency and scalability in an increasingly intricate pricing landscape. Future research will focus on refining extraction capabilities and enhancing the system's adaptability to a wider range of SaaS websites.
Abstract:Deep learning-based bilateral grid processing has emerged as a promising solution for image enhancement, inherently encoding spatial and intensity information while enabling efficient full-resolution processing through slicing operations. However, existing approaches are limited to linear affine transformations, hindering their ability to model complex color relationships. Meanwhile, while multi-layer perceptrons (MLPs) excel at non-linear mappings, traditional MLP-based methods employ globally shared parameters, which is hard to deal with localized variations. To overcome these dual challenges, we propose a Bilateral Grid-based Pixel-Adaptive Multi-layer Perceptron (BPAM) framework. Our approach synergizes the spatial modeling of bilateral grids with the non-linear capabilities of MLPs. Specifically, we generate bilateral grids containing MLP parameters, where each pixel dynamically retrieves its unique transformation parameters and obtain a distinct MLP for color mapping based on spatial coordinates and intensity values. In addition, we propose a novel grid decomposition strategy that categorizes MLP parameters into distinct types stored in separate subgrids. Multi-channel guidance maps are used to extract category-specific parameters from corresponding subgrids, ensuring effective utilization of color information during slicing while guiding precise parameter generation. Extensive experiments on public datasets demonstrate that our method outperforms state-of-the-art methods in performance while maintaining real-time processing capabilities.
Abstract:Existing LGL methods typically consider only partial information (e.g., geometric features) from LiDAR observations or are designed for homogeneous LiDAR sensors, overlooking the uniformity in LGL. In this work, a uniform LGL method is proposed, termed UniLGL, which simultaneously achieves spatial and material uniformity, as well as sensor-type uniformity. The key idea of the proposed method is to encode the complete point cloud, which contains both geometric and material information, into a pair of BEV images (i.e., a spatial BEV image and an intensity BEV image). An end-to-end multi-BEV fusion network is designed to extract uniform features, equipping UniLGL with spatial and material uniformity. To ensure robust LGL across heterogeneous LiDAR sensors, a viewpoint invariance hypothesis is introduced, which replaces the conventional translation equivariance assumption commonly used in existing LPR networks and supervises UniLGL to achieve sensor-type uniformity in both global descriptors and local feature representations. Finally, based on the mapping between local features on the 2D BEV image and the point cloud, a robust global pose estimator is derived that determines the global minimum of the global pose on SE(3) without requiring additional registration. To validate the effectiveness of the proposed uniform LGL, extensive benchmarks are conducted in real-world environments, and the results show that the proposed UniLGL is demonstratively competitive compared to other State-of-the-Art LGL methods. Furthermore, UniLGL has been deployed on diverse platforms, including full-size trucks and agile Micro Aerial Vehicles (MAVs), to enable high-precision localization and mapping as well as multi-MAV collaborative exploration in port and forest environments, demonstrating the applicability of UniLGL in industrial and field scenarios.
Abstract:We propose SGLoc, a novel localization system that directly regresses camera poses from 3D Gaussian Splatting (3DGS) representation by leveraging semantic information. Our method utilizes the semantic relationship between 2D image and 3D scene representation to estimate the 6DoF pose without prior pose information. In this system, we introduce a multi-level pose regression strategy that progressively estimates and refines the pose of query image from the global 3DGS map, without requiring initial pose priors. Moreover, we introduce a semantic-based global retrieval algorithm that establishes correspondences between 2D (image) and 3D (3DGS map). By matching the extracted scene semantic descriptors of 2D query image and 3DGS semantic representation, we align the image with the local region of the global 3DGS map, thereby obtaining a coarse pose estimation. Subsequently, we refine the coarse pose by iteratively optimizing the difference between the query image and the rendered image from 3DGS. Our SGLoc demonstrates superior performance over baselines on 12scenes and 7scenes datasets, showing excellent capabilities in global localization without initial pose prior. Code will be available at https://github.com/IRMVLab/SGLoc.